
sensors

Article

SECOND: Sparsely Embedded
Convolutional Detection

Yan Yan 1,2, , Yuxing Mao 1,* and Bo Li 2

1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology,
Chongqing University, Chongqing 400044, China; scrin@foxmail.com

2 TrunkTech Co., Ltd., No. 3, Danling street, ZhongGuan Town, HaiDian District, Beijing 100089, China;
libo@trunk.tech

* Correspondence: myx@cqu.edu.cn

Received: 20 August 2018; Accepted: 1 October 2018; Published: 6 October 2018
����������
�������

Abstract: LiDAR-based or RGB-D-based object detection is used in numerous applications, ranging
from autonomous driving to robot vision. Voxel-based 3D convolutional networks have been
used for some time to enhance the retention of information when processing point cloud LiDAR
data. However, problems remain, including a slow inference speed and low orientation estimation
performance. We therefore investigate an improved sparse convolution method for such networks,
which significantly increases the speed of both training and inference. We also introduce a new form of
angle loss regression to improve the orientation estimation performance and a new data augmentation
approach that can enhance the convergence speed and performance. The proposed network produces
state-of-the-art results on the KITTI 3D object detection benchmarks while maintaining a fast
inference speed.

Keywords: 3D object detection; convolutional neural networks; LIDAR; autonomous driving

1. Introduction

Great advances have been made in convolutional neural network (CNN)-based object
detection [1,2], instance segmentation [3] and key-point detection [4] in recent years. This form of
detection can be used in autonomous driving based on either monocular [5] or stereo images [6]. However,
the methods used to process images cannot be applied directly to LiDAR data. This is a significant
limitation for applications such as autonomous driving and robot vision. State-of-the-art methods can
achieve an average precision (AP) of 90% of 2D car detection but only an AP of 15% [7] for 3D image-based
car detection. To overcome the lack of spatial information provided by images alone, point cloud data have
become increasingly important in 3D applications. Point cloud data contain accurate depth information
and can be generated by LiDAR or RGB-D cameras.

Many current 3D detectors use a fusion method that exploits both images and point cloud data.
Point cloud data are converted into a 2D bird’s eye view image [8] or are projected onto an image [9,10].
Features are then extracted using a convolutional network, and a fusion process is applied to map the
features between the image and other views. In [11], the point cloud data are initially filtered using
bounding boxes generated by a 2D detector, and a convolutional network is then used to directly
process the points. In other methods, such as those of [12–15], the point cloud data are assigned to
volumetric grid cells via quantization, and 3D CNNs are then applied.

Recently, a new approach called VoxelNet [14] has been developed. This approach combines
raw point cloud feature extraction and voxel-based feature extraction in a single-stage end-to-end
network. It first groups point cloud data into voxels and then applies linear networks voxel
by voxel before converting the voxels into dense 3D tensors to be used in a region proposal

Sensors 2018, 18, 3337; doi:10.3390/s18103337 www.mdpi.com/journal/sensors

guojianhua
文本框
三大贡献，提出一个网络提高速度，提出一个角度回归函数改善方向估计和一个新的数据增强方式。

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3314-1518
http://www.mdpi.com/1424-8220/18/10/3337?type=check_update&version=1
http://dx.doi.org/10.3390/s18103337
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3337 2 of 17

network (RPN) [16]. At present, this is a state-of-the-art approach. However, its computational
cost makes it difficult to use for real-time applications. In this paper, we present a novel approach
called SECOND (Sparsely Embedded CONvolutional Detection), which addresses these challenges
in 3D convolution-based detection by maximizing the use of the rich 3D information present in
point cloud data. This method incorporates several improvements to the existing convolutional
network architecture. Spatially sparse convolutional networks are introduced for LiDAR-based
detection and are used to extract information from the z-axis before the 3D data are downsampled to
something akin to 2D image data. We also use a GPU (Graphics Processing Unit)-based rule generation
algorithm for sparse convolution to increase the speed. In comparison to a dense convolution network,
our sparse-convolution-based detector achieves a factor-of-4 speed enhancement during training on
the KITTI dataset and a factor-of-3 improvement in the speed of inference. As a further test, we have
designed a small model for real-time detection that has a run time of approximately 0.025 s on a GTX
1080 Ti GPU, with only a slight loss of performance.

Another advantage of using point cloud data is that it is very easy to scale, rotate and move
objects by applying direct transformations to specified points on those objects. SECOND incorporates
a novel form of data augmentation based on this capability. A ground-truth database is generated
that contains the attributes of objects and the associated point cloud data. Objects sampled from this
database are then introduced into the point clouds during training. This approach can greatly increase
the convergence speed and the final performance of our network.

In addition to the above, we also introduce a novel angle loss regression approach to solve the
problem of the large loss generated when the difference in orientation between the ground truth
and the prediction is equal to π, which yields a bounding box identical to the true bounding box.
The performance of this angle regression approach surpasses that of any current method we know
about, including the orientation vector regression function available in AVOD [9]. We also introduce
an auxiliary direction classifier to recognize the directions of objects.

At the time of submission, our method produces state-of-the-art results across all classes for
KITTI-based 3D detection [7], while running at 20 fps for the larger model and 40 fps for the smaller one.

The key contributions of our work are as follows:

• We apply sparse convolution in LiDAR-based object detection, thereby greatly increasing the
speeds of training and inference.

• We propose an improved method of sparse convolution that allows it to run faster.
• We propose a novel angle loss regression approach that demonstrates better orientation regression

performance than other methods do.
• We introduce a novel data augmentation method for LiDAR-only learning problems that greatly

increases the convergence speed and performance.

2. Related Work

Below, we briefly review existing works on 3D object detection based on point cloud data
and images.

2.1. Front-View- and Image-Based Methods

Methods using 2D representations of RGB-D data can be divided into two classes: those based
on a bird’s eye view (BEV) and those based on a front view. In typical image-based methods [5],
2D bounding boxes, class semantics and instance semantics are generated first, and then hand-crafted
approaches are used to generate feature maps. Another method [17] uses a CNN to estimate 3D
bounding boxes from images and a specially designed discrete-continuous CNN to estimate the
orientations of objects. Methods using LiDAR [18] involve the conversion of point clouds into
front-view 2D maps and the application of 2D detectors to localize objects in the front-view images.
These methods have been shown to perform poorly for both BEV detection and 3D detection compared
to other methods.

guojianhua
高亮

guojianhua
文本框
SECOND的特点是最大限度地利用点云中的三维信息

guojianhua
下划线

guojianhua
文本框
在点云被下采样成为二维之前就先提取一部分特征

guojianhua
高亮

guojianhua
下划线

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮



Sensors 2018, 18, 3337 3 of 17

2.2. Bird’s-Eye-View-Based Methods

MV3D [8] is the first method to convert point cloud data into a BEV representation. In this
method, point cloud data are converted into several slices to obtain height maps, and these height
maps are then concatenated with the intensity map and density map to obtain multichannel features.
ComplexYOLO [19] uses a YOLO (You Only Look Once) [20] network and a complex angle encoding
approach to increase speed and orientation performance, but it uses fixed heights and z-locations in
the predicted 3D bounding boxes. In [21], a fast single-stage proposal-free detector is designed that
makes use of specific height-encoded BEV input. A key problem with all of these approaches, however,
is that many data points are dropped when generating a BEV map, resulting in a considerable loss
of information on the vertical axis. This information loss severely impacts the performance of these
methods in 3D bounding box regression.

2.3. 3D-Based Methods

Most 3D-based methods either use point cloud data directly or require converting these data into
3D grids or voxels instead of generating BEV representations. In [12], point cloud data are converted
into voxels containing feature vectors, and then a novel convolution-like voting-based algorithm is
used for detection. Ref. [13] exploits sparsity in point cloud data by leveraging a feature-centric voting
scheme to implement novel convolutions, thus increasing the computation speed. These methods
use hand-crafted features, and while they yield satisfactory results on specific datasets, they cannot
adapt to the complex environments commonly encountered in autonomous driving. In a distinct
approach, the authors of [22,23] develop a system that could learn pointwise features directly from
point clouds by means of a novel CNN-based architecture, whereas Ref. [24] uses a k-neighborhood
method together with convolution to learn local spatial information from a point cloud. These methods
directly process point cloud data to perform 1D convolution on k-neighborhood points, but they
cannot be applied to a large number of points; thus, image detection results are needed to filter
the original data points. Some CNN-based detectors convert point cloud data into voxels. In the
method presented in [15], point cloud data are discretized into two-valued voxels, and then 3D
convolution is applied. The method of [14] groups point cloud data into voxels, extracts voxelwise
features, and then converts these features into a dense tensor to be processed using 3D and 2D
convolutional networks. The major problem with these methods is the high computational cost of 3D
CNNs. Unfortunately, the computational complexity of a 3D CNN grows cubically with the voxel
resolution. In [25,26], a spatially sparse convolution is designed that increases the 3D convolution
speed, whereas Ref. [27] proposes a new approach to 3D convolution in which the spatial structure of
the output remains unchanged, which greatly increases the processing speed. In [28], submanifold
convolution is applied for the 3D semantic segmentation task; however, there is no known method
that uses sparse convolution for the detection task.

Similar to all of these approaches, our method makes use of a 3D convolutional architecture, but it
incorporates several novel improvements.

2.4. Fusion-Based Methods

Some methods combine camera images with point clouds. For instance, the authors of [29]
use a 3D RPN at two scales with different receptive fields to generate 3D proposals and then feed the
3D volume from the depth data of each 3D proposal into a 3D CNN and the corresponding 2D color
patch into a 2D CNN to predict the final results. In the method presented in [8], point cloud data are
converted into a front view and a BEV, and then the feature maps extracted from both point cloud
maps are fused with an image feature map. The MV3D network with images performs better than the
BEV-only network by a large margin, but this architecture does not work well for small objects and
runs slowly because it contains three CNNs. The authors of [9] combine images with a BEV and then
use a novel architecture to generate high-resolution features maps and 3D object proposals. In [11],

guojianhua
下划线

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
文本框
子流

guojianhua
下划线

guojianhua
文本框
复杂的计算效率



Sensors 2018, 18, 3337 4 of 17

2D detection results are used to filter a point cloud such that PointNet [22] could then be applied to
predict 3D bounding boxes. However, fusion-based methods typically run slowly because they need to
process a significant amount of image input. The additional requirement of a time-synchronized and
calibrated camera with LiDAR capabilities restricts the environments in which such methods can be
used and reduces their robustness. Our method, by contrast, can achieve state-of-the-art performance
using only LiDAR data.

3. SECOND Detector

In this section, we describe the architecture of the proposed SECOND detector and present the
relevant details regarding training and inference.

3.1. Network Architecture

The proposed SECOND detector, depicted in Figure 1, consists of three components:
(1) a voxelwise feature extractor; (2) a sparse convolutional middle layer; and (3) an RPN.

Figure 1. The structure of our proposed SECOND detector. The detector takes a raw point cloud as
input, converts it to voxel features and coordinates, and applies two VFE (voxel feature encoding)
layers and a linear layer. Then, a sparse CNN is applied. Finally, an RPN generates the detection.

3.1.1. Point Cloud Grouping

Here, we follow the simple procedure described in [14] to obtain a voxel representation of
point cloud data. We first preallocate buffers based on the specified limit on the number of voxels;
then, we iterate over the point cloud and assign the points to their associated voxels, and we save the
voxel coordinates and the number of points per voxel. We check the existence of the voxels based
on a hash table during the iterative process. If the voxel related to a point does not yet exist, we set
the corresponding value in the hash table; otherwise, we increment the number of voxels by one.
The iterative process will stop once the number of voxels reaches the specified limit. Finally, we obtain
all voxels, their coordinates and the number of points per voxel for the actual number of voxels. For the
detection of cars and other objects in related classes, we crop the point cloud based on the ground-truth
distribution at [−3, 1]× [−40, 40]× [0, 70.4] m along the z× y× x axes. For pedestrian and cyclist
detection, we use crop points at [−3, 1]× [−20, 20]× [0, 48] m. For our smaller model, we use only
points within the range of [−3, 1]× [−32, 32]× [0, 52.8] m to increase the inference speed. The cropped
areas need to be slightly adjusted based on the voxel size to ensure that the sizes of the generated
feature maps can be correctly downsampled in the subsequent networks. For all tasks, we use a voxel
size of vD = 0.4× vH = 0.2× vW = 0.2 m. The maximum number of points in each empty voxel for
car detection is set to T = 35, which is selected based on the distribution of the number of points per
voxel in the KITTI dataset; the corresponding maximum for pedestrian and cyclist detection is set to
T = 45 because pedestrians and cyclists are relatively small and, consequently, more points are needed
for voxelwise feature extraction.

guojianhua
高亮

guojianhua
文本框
融合有两个缺点，一是慢，二是需要多个传感器之间的同步

guojianhua
文本框
划分体素提取特征卷积

guojianhua
高亮

guojianhua
文本框
在遍历点的时候在哈希表中产生体素

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮



Sensors 2018, 18, 3337 5 of 17

3.1.2. Voxelwise Feature Extractor

We use a voxel feature encoding (VFE) layer, as described in [14], to extract voxelwise features.
A VFE layer takes all points in the same voxel as input and uses a fully connected network (FCN)
consisting of a linear layer, a batch normalization (BatchNorm) layer and a rectified linear unit (ReLU)
layer to extract pointwise features. Then, it uses elementwise max pooling to obtain the locally
aggregated features for each voxel. Finally, it tiles the obtained features and concatenates these
tiled features and the pointwise features together. We use VFE(cout) to denote a VFE layer that
transforms the input features into cout-dimensional output features. Similarly, FCN(cout) denotes
a Linear-BatchNorm-ReLU layer that transforms the input features into cout-dimensional output
features. As a whole, the voxelwise feature extractor consists of several VFE layers and an FCN layer.

3.1.3. Sparse Convolutional Middle Extractor

Review of Sparse Convolutional Networks

Ref. [25] was the first paper to introduce spatially sparse convolution. In this approach,
output points are not computed if there is no related input point. This approach offers computational
benefits in LiDAR-based detection because the grouping step for the point clouds in KITTI will
generate 5k–8k voxels with a sparsity of nearly 0.005. As an alternative to normal sparse convolution,
submanifold convolution [27] restricts an output location to be active if and only if the corresponding
input location is active. This avoids the generation of too many active locations, which can lead to
a decrease in speed in subsequent convolution layers due to the large number of active points.

Sparse Convolution Algorithm

Let us first consider the 2D dense convolution algorithm. We use Wu,v,l,m to denote filtered
elements and Du,v,l to denote image elements, where u and v are spatial location indices, l represents
input channels and m represents output channels. The function P(x, y) generates the input locations
that need to be computed given the provided output locations. Thus, the convolution output for Yx,y,m

is given by the following formula:

Yx,y,m = ∑
u,v∈P(x,y)

∑
l

Wu−u0,v−v0,l,mDu,v,l , (1)

where x and y are the output spatial indexes and u − u0 and v − v0 represent the kernel-offset u
and v coordinates. A general matrix multiplication (GEMM)-based algorithm (also known as the
im2col-based algorithm [30]) can be used to gather all of the data needed to construct a matrix D̃P(x,y),l
and then perform GEMM itself:

Yx,y,m = ∑
l

W∗,l,mD̃P(x,y),l , (2)

where W∗,l,m corresponds to Wu−u0,v−v0,l,m but in GEMM form. For the sparse data D
′
i,l and the

associated output Y
′
j,m, the direct calculation algorithm can be written as follows:

Y
′
j,m = ∑

i∈P′ (j)
∑

l
Wk,l,mD

′
i,l , (3)

where P
′
(j) is a function for obtaining the input index i and the filter offset. The subscript k is the 1D

kernel offset that corresponds to u− u0 and v− v0 in Equation (1), and the subscript i corresponds to
u and v in Equation (1). The GEMM-based version of Equation (3) is given by the following formula:

Y
′
j,m = ∑

l
W∗,l,mD̃

′

P′ (j),l
. (4)

guojianhua
高亮

guojianhua
高亮

guojianhua
文本框
VFE中有全连接层，在后面把每一个点的特征融合起来也用一个全连接层，对一个体素只产生一个特征

guojianhua
高亮

guojianhua
文本框
级联之后还有个全连接层整合特征

guojianhua
文本框
节省时间

guojianhua
文本框
空间离散卷积

guojianhua
高亮

guojianhua
文本框
子流型卷积

guojianhua
文本框
对于这种卷积，只有有输入才能产生输出

guojianhua
高亮

guojianhua
高亮

guojianhua
下划线

guojianhua
文本框
P是根据输出位置计算输入位置的函数

guojianhua
文本框
二维卷积变成一维卷积

guojianhua
高亮

guojianhua
下划线



Sensors 2018, 18, 3337 6 of 17

The gathered matrix D̃
′

P′ (j),l
of sparse data still contains many zeros that do not need to be

computed. To solve this problem, instead of directly converting Equation (3) into Equation (4),
we rewrite Equation (3) as follows:

Y
′
j,m = ∑

k
∑

l
Wk,l,mD̃

′
Rk,j ,k,l , (5)

where Rk,j, also called Rule, is a matrix that specifies the input index i given the kernel offset k and
the output index j. The inner sum in Equation (5) cannot be calculated via GEMM, so we need to
gather the necessary input to construct the matrix, perform GEMM, and then scatter the data back.
In practice, we can gather the data directly from the original sparse data by using a preconstructed
input–output index rule matrix. This increases the speed. In detail, we construct a rule matrix table
Rk,i,t = R[k, i, t] with dimensions of K× Nin × 2, where K is the kernel size (expressed as a volume),
Nin is the number of input features and t is the input/output index. The elements R[:, :, 0] store the
input indexes for gathering, and the elements R[:, :, 1] store the output indexes for scattering. The top
part of Figure 2 shows our proposed algorithm.

Figure 2. The sparse convolution algorithm is shown above, and the GPU rule generation algorithm
is shown below. Nin denotes the number of input features, and Nout denotes the number of output
features. N is the number of gathered features. Rule is the rule matrix, where Rule[i, :, :] is the i-th rule
corresponding to the i-th kernel matrix in the convolution kernel. The boxes with colors except white
indicate points with sparse data and the white boxes indicate empty points.

Rule Generation Algorithm

The major performance challenges confronting current implementations [31] are associated with
the rule generation algorithm. A CPU-based rule generation algorithm using a hash table is typically
used, but such an algorithm is slow and requires data transfer between the CPU and GPU. A more
direct approach to rule generation is to iterate over the input points to find the outputs related to each
input point and store the corresponding indexes into the rules. During the iterative process, a table is
needed to check the existence of each output location to decide whether to accumulate the data using
a global output index counter. This is the greatest challenge hindering the use of parallel computing in
the algorithm.

In our case, we have designed a GPU-based rule generation algorithm (Algorithm 1) that runs
faster on a GPU. The bottom part of Figure 1 shows our proposed algorithm. First, we collect the

guojianhua
下划线

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
文本框
这里的t等于2

guojianhua
高亮

guojianhua
下划线

guojianhua
文本框
如何构造规则矩阵R呢，遍历输入点，找到与每一个输入点相关的输出点，然后存储相应的下标



Sensors 2018, 18, 3337 7 of 17

input indexes and associated spatial indexes instead of the output indexes (1st loop in Algorithm 1).
Duplicate output locations are obtained in this stage. We then execute a unique parallel algorithm
on the spatial index data to obtain the output indexes and their associated spatial indexes. A buffer
with the same spatial dimensions as those of the sparse data is generated from the previous results
for table lookup in the next step (2nd loop in Algorithm 1). Finally, we iterate on the rules and use
the stored spatial indexes to obtain the output index for each input index (3rd loop in Algorithm 1).
Table 1 shows a performance comparison between our implementation and existing approaches.

Algorithm 1: 3D Rule Generation
Data: Indice, Grid
Result: Rule
Indice Coordinates of active points, with dimensions of nin × 3;
Grid A buffer with dimensions of N × D× H ×W;
iin The input index;
iout The output index;
Rule[:]← −1;
nin ← number of input points;
nkernel ← volume of convolution kernel;
nout ← number of output points;
for iin ← 0 to nin do

pin ← Indice[iin];
Pouts ← getOutputCoord(pin);
for p ∈ Pouts do

index ← getSpatialIndex(p);
o f f set← getOffset(p, pin);
Rule[o f f set, iin, 0]← iin;
Rule[o f f set, iin, 1]← index;

end
end
Spatial Index ← Rule[:, :, 1];
nout ← unique(Spatial Index);
for iout ← 0 to nout do

Grid[Spatial Index[iout]]← iout;
end
for iin ← 0 to nin do

for j← 0 to nkernel do
index ← Rule[j, iin, 1];
if index >= 0 then

Rule[j, iin, 1]← Grid[index];
end

end
end

guojianhua
下划线

guojianhua
文本框
收集输入索引和相应的空间下标

guojianhua
高亮

guojianhua
高亮

guojianhua
文本框
由空间坐标得到索引0存的是输入的索引，1存的是输出的空间坐标

guojianhua
高亮

guojianhua
文本框
把空间索引存到GRid中，相当于缓存grid的下标是输出坐标，值是输出索引

guojianhua
文本框
由输入的空间坐标得到输出点的空间坐标

guojianhua
文本框
主要有四个数据输入坐标和输入索引输出坐标和输出索引

guojianhua
文本框

guojianhua
文本框
这样就可以通过输入的索引得到输出的索引



Sensors 2018, 18, 3337 8 of 17

Table 1. Comparison of the execution speeds of various convolution implementations. SparseConvNet
is the official implementation of submanifold convolution [27]. All benchmarks were run on a GTX
1080 Ti GPU with the data from the KITTI dataset.

Sparse Convolution (1 layer)

Channels SECOND SpConvNet [31] Dense

64× 64 8.6 21.2 567
128× 128 13.8 24.8 1250
256× 256 25.3 37.4 N/A
512× 512 58.7 86.0 N/A

Submanifold Convolution (4 layers)

Channels SECOND SpConvNet [31] Dense

64× 64 7.1 16.0 N/A
128× 128 11.3 21.5 N/A
256× 256 20.4 37.0 N/A
512× 512 49.0 94.1 N/A

Sparse Convolutional Middle Extractor

Our middle extractor is used to learn information about the z-axis and convert the sparse 3D
data into a 2D BEV image. Figure 3 shows the structure of the middle extractor. It consists of two
phases of sparse convolution. Each phase contains several submanifold convolutional layers and one
normal sparse convolution to perform downsampling in the z-axis. After the z-dimensionality has been
downsampled to one or two, the sparse data are converted into dense feature maps. Then, the data are
simply reshaped into image-like 2D data.

Figure 3. The structure of our proposed sparse middle feature extractor. The yellow boxes represent
sparse convolution, the white boxes represent submanifold convolution, and the red box represents the
sparse-to-dense layer. The upper part of the figure shows the spatial dimensions of the sparse data.

3.1.4. Region Proposal Network

RPNs [1] have recently begun to be used in many detection frameworks. In this work, we use
a single shot multibox detector (SSD)-like [32] architecture to construct an RPN architecture. The input
to the RPN consists of the feature maps from the sparse convolutional middle extractor. The RPN
architecture is composed of three stages. Each stage starts with a downsampled convolutional layer,
which is followed by several convolutional layers. After each convolutional layer, BatchNorm and
ReLU layers are applied. We then upsample the output of each stage to a feature map of the same size
and concatenate these feature maps into one feature map. Finally, three 1 × 1 convolutions are applied
for the prediction of class, regression offsets and direction.

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
文本框
结果也是将三维压成了二维了，避免了三维卷积带来的时间消耗

guojianhua
高亮



Sensors 2018, 18, 3337 9 of 17

3.1.5. Anchors and Targets

Because the objects to be detected are of approximately fixed sizes, we use fixed-size anchors
determined based on the means of the sizes and center locations of all ground truths in the KITTI
training set with rotations of 0 and 90 degrees. For cars, we use an anchor with dimensions of
w = 1.6× l = 3.9× h = 1.56 m, centered at z = −1.0 m. For pedestrians, we use an anchor with
dimensions of w = 0.6 × l = 0.8 × h = 1.73 m, and for cyclists, the anchor has dimensions of
w = 0.6× l = 1.76× h = 1.73 m; both are centered at z = −0.6 m.

Each anchor is assigned a one-hot vector of classification targets, a 7-vector of box regression
targets and a one-hot vector of direction classification targets. Different classes have different thresholds
for matching and nonmatching. For cars, the anchors are assigned to ground-truth objects using
an intersection-over-union (IoU) threshold of 0.6 and are assigned to the background (negative) if
their IoUs are less than 0.45. Anchors with IoUs between 0.45 and 0.6 are ignored during training.
For pedestrians and cyclists, we use values of 0.35 for the nonmatching threshold and 0.5 for the
matching threshold.

For the regression targets, we use the following box encoding functions:

xt =
xg − xa

da
, yt =

yg − ya

da
, zt =

zg − za

ha
,

wt = log(
wg

wa
), lt = log(

lg

la
), ht = log(

hg

ha
),

θt = θg − θa,

(6)

where x, y, and z are the center coordinates; w, l, and h are the width, length, and height, respectively;
θ is the yaw rotation around the z-axis; the subscripts t, a, and g indicate the encoded value, the anchor,
and the ground truth, respectively; and da =

√
(la)2 + (wa)2 is the diagonal of the base of the

anchor box.

3.2. Training and Inference

3.2.1. Loss

Sine-Error Loss for Angle Regression

Previous methods of angle regression, including corner encoding, direct encoding and vector
encoding, usually exhibit poor performance. The corner prediction approach [8] cannot determine the
direction of an object and cannot be used for pedestrian detection, for which the BEV boxes are nearly
square. The vector encoding approach [9,19] retains redundant information and leads to difficulty
detecting far-away objects based on LiDAR. VoxelNet [14] directly predicts the radian offset but is
subject to an adversarial example problem between the cases of 0 and π radians because these two
angles correspond to the same box but generate a large loss when one is misidentified as the other.
Our architecture solves this problem by introducing a new angle loss regression:

Lθ = SmoothL1(sin(θp − θt)), (7)

where the subscript p indicates the predicted value. This approach to angle loss has two advantages:
(1) it solves the adversarial example problem between orientations of 0 and π, and (2) it naturally
models the IoU against the angle offset function. To address the issue that this loss treats boxes with
opposite directions as being the same, we have added a simple direction classifier to the output of the
RPN. This direction classifier uses a softmax loss function. We use the following approach to generate
the direction classifier target: if the yaw rotation around the z-axis of the ground truth is higher than
zero, the result is positive; otherwise, it is negative.

guojianhua
高亮

guojianhua
文本框
单一的锚

guojianhua
高亮

guojianhua
文本框
方向当成分类问题了

guojianhua
高亮

guojianhua
文本框
回归目标是常用的这种类型，不是直接通过两个之间的差，而是通过相对的小

guojianhua
高亮

guojianhua
文本框
直接用弧度差的话，对于0和π实际上是同一个框，却有很大的误差

guojianhua
高亮

guojianhua
文本框

guojianhua
文本框
但是这么定义损失函数的话，对于方向相反的框损失函数为零，所以额外加入一个方向分类器，用以判断这个方向是正还是负那o和π也是相反方向，他们损失函数很大也很正常，为什么要单独拎出来？



Sensors 2018, 18, 3337 10 of 17

Focal Loss for Classification

Our network usually generates∼70 k anchors within a KITTI point cloud. Unfortunately, there are
usually only a few ground truths, each of which generates only 4–6 positives. This leads to an extreme
imbalance between the foreground and background classes. The authors of RetinaNet [33] introduced
an effective single-stage loss, called the focal loss, that can solve this problem; therefore, we use this
loss in our architecture. The classification loss has the following form:

FL(pt) = −αt(1− pt)
γ log(pt), (8)

where pt is the model’s estimated probability and α and γ are the parameters of the focal loss. We use
α = 0.25 and γ = 2 in our training process.

Total Training Loss

By combining the losses discussed above, we can obtain the final form of the multitask loss
as follows:

Ltotal = β1Lcls + β2(Lreg−θ + Lreg−other) + β3Ldir, (9)

where Lcls is the classification loss, Lreg−other is the regression loss for location and dimension, Lreg−θ is
our novel angle loss, and Ldir is the direction classification loss. β1 = 1.0, β2 = 2.0, and β3 = 0.2 are
constant coefficients of our loss formula. We use a relatively small value of β3 to avoid cases in which
our network would struggle to recognize the directions of objects.

3.2.2. Data Augmentation

Sample Ground Truths from the Database

The major problem we encountered during training was the existence of too few ground truths,
which significantly limited the convergence speed and final performance of the network. To solve this
problem, we introduced a data augmentation approach. First, we generated a database containing
the labels of all ground truths and their associated point cloud data (points inside the 3D bounding
boxes of the ground truths) from the training dataset. Then, during training, we randomly selected
several ground truths from this database and introduced them into the current training point cloud
via concatenation. Using this approach, we could greatly increase the number of ground truths per
point cloud and simulate objects existing in different environments. To avoid physically impossible
outcomes, we performed a collision test after sampling the ground truths and removed any sampled
objects that collided with other objects.

Object Noise

To consider noise, we followed the same approach used in VoxelNet [14], in which each ground
truth and its point cloud are independently and randomly transformed, instead of transforming
all point clouds with the same parameters. Specifically, we used random rotations sampled from
a uniform distribution ∆θ ∈ [−π/2, π/2] and random linear transformations sampled from a Gaussian
distribution with a mean of zero and a standard deviation of 1.0.

Global Rotation and Scaling

We applied global scaling and rotation to the whole point cloud and to all ground-truth boxes.
The scaling noise was drawn from the uniform distribution [0.95, 1.05], and [−π/4, π/4] was used for
the global rotation noise.

guojianhua
文本框
focal loss用以解决正负样本不平衡的问题

guojianhua
高亮

guojianhua
下划线

guojianhua
文本框
往点云里加Gt的点，数据增强的好方法

guojianhua
高亮

guojianhua
高亮

guojianhua
文本框
对每一个点云或者点云里的一些GT，采用随机的变换

guojianhua
文本框
对所有的点云进行统一的变换



Sensors 2018, 18, 3337 11 of 17

3.2.3. Optimization

The proposed SECOND detector was trained using stochastic gradient descent (SGD). We used
an Adam optimizer run on a GTX 1080 Ti GPU with a total of three point clouds per minibatch.
All models were trained for 160 epochs (200k iterations). The initial learning rate was 0.0002,
with an exponential decay factor of 0.8 and a decay every 15 epochs. A decay weight of 0.0001,
a beta1 value of 0.9 and a beta2 value of 0.999 were used. Training the large car detection network with
a single GTX 1080 Ti GPU took 19 h, and only 9 h was needed to train the smaller model.

3.2.4. Network Details

We propose the use of two networks: a large one and a small one. Points that lie outside the
camera view frustum need to be removed.

For car detection, two VFE layers are used in SECOND, namely, VFE(32) and VFE(128) for
the large network and VFE(32) and VFE(64) for the smaller network, following a Linear(128)
layer. Thus, the dimensions of the output sparse tensor are 128 × 10 × 400 × 352 for the large
network and 128× 10× 320× 264 for the small network. Then, we use a two-stage sparse CNN
for feature extraction and dimension reduction, as shown in Figure 3. Each convolutional layer
follows a BatchNorm layer and a ReLU layer. All sparse convolutional layers have a 64-output feature
map, a kernel size of (3, 1, 1) kernel size and a stride of (2, 1, 1). The dimensions of the output of
the middle block are 64× 2× 400× 352 for the large network. Once the output has been reshaped
to 128× 400× 352, the RPN network can be applied. Figure 4 shows the architecture of the RPN.
We use Conv2D(cout, k, s) to represent a Conv2D-BatchNorm-ReLU layer and DeConv2D(cout, k, s) to
represent a DeConv2D-BatchNorm-ReLU layer, where cout is the number of output channels, k is the
kernel size and s is the stride. Because all layers have the same size across all dimensions, we use
scalar values for k and s. All Conv2D layers have the same padding, and all DeConv2D layers have
zero padding. In the first stage of our RPN, three Conv2D(128, 3, 1(2)) layers are applied. Then,
five Conv2D(128, 3, 1(2)) layers and five Conv2D(256, 3, 1(2)) layers are applied in the second and
third stages, respectively. In each stage, s = 2 only for the first convolutional layer; otherwise, s = 1.
We apply a single DeConv2D(128, 3, s) layer for the last convolution in each stage, with s = 1, 2, and 4
for the three stages, sequentially. For pedestrian and cyclist detection, the only difference with respect
to car detection is that the stride of the first convolutional layer in the RPN is 1 instead of 2.

Figure 4. The detailed structure of the RPN. Blue boxes represent convolutional layers, purple boxes
represent layers for concatenation, sky blue boxes represent stride-2 downsampling convolutional
layers, and brown boxes represent transpose convolutional layers.

4. Experiments

We trained our network on the KITTI dataset [34] and evaluated our 3D object detector on
the KITTI benchmarks [7] for 3D object detection and BEV object detection, which include Car,

guojianhua
下划线

guojianhua
高亮

guojianhua
下划线

guojianhua
下划线

guojianhua
文本框
卷积再反卷积级联



Sensors 2018, 18, 3337 12 of 17

Pedestrian and Cyclist benchmarks. For each class, the detector was evaluated for three levels of
difficulty: easy, moderate and hard. The difficulty assessment was based on the object height in the 2D
results, occlusion and truncation. We followed the approach proposed in [8] by splitting the provided
7481 training examples into a training set of 3712 samples and an evaluation set of 3769 samples.
Because of limited access to the test server, we evaluated our larger model using only the test set
and thus can provide an assessment of performance on the validation set only for our smaller model.
The BEV and 3D detection results were evaluated in terms of the AP. We compared our proposed
method with several state-of-the art methods. Here, we focus on the car detection results because
pedestrian and cyclist detection may need images to get better results, as described in Section 4.3.
Our computation environment for inference included a Core-i5 6500 CPU (4 cores), 16 GB of DDR4
memory and a GTX 1080 Ti GPU.

4.1. Evaluation Using the KITTI Test Set

Table 2 presents the performance of our 3D detector on the KITTI test set. Our method
achieves state-of-the-art results with only LiDAR data and is superior to the original VoxelNet [14]
by a significant margin, while AVOD-FPN [9] uses both image and LiDAR data and uses a custom
85/15 training/validation split (as opposed to our 50/50 split) and ground plane estimation to
improve the results. F-PointNet [11] uses a 2D detector that has been fine-tuned using ImageNet
weights, whereas our network is trained from scratch and uses only LiDAR data. For pedestrian
and cyclist detection, our results are comparable to the state-of-the-art results. Table 3 shows the
performance of our method for 3D BEV object localization. Our method performs slightly worse
than the state-of-the-art methods but still achieves comparable results, and it performs better than the
LiDAR-only VoxelNet [14] network.

We present several 3D detection results in Figure 5. The 3D bounding boxes have been projected
into the camera coordinate system. Overall, this evaluation shows that our network can produce
high-accuracy results with a fast inference speed.

Table 2. 3D detection performance: Average precision (AP) (in %) for 3D boxes in the KITTI test set.
In AVOD and AVOD-FPN [9], a custom 85/15 training/validation split and ground plane estimation
are adopted to improve the results. For F-PointNet [11], a GTX 1080 GPU, which has 67% of the
peak performance of a GTX 1080 Ti (used for our method) or a Titan Xp (used for AVOD), was used
for inference. The bold number indicates the best result in a table.

Method Time (s)
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

MV3D [8] 0.36 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A
MV3D (LiDAR) [8] 0.24 66.77 52.73 51.31 N/A N/A N/A N/A N/A N/A

F-PointNet [11] 0.17 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
AVOD [9] 0.08 73.59 65.78 58.38 38.28 31.51 26.98 60.11 44.90 38.80

AVOD-FPN [9] 0.1 81.94 71.88 66.38 46.35 39.00 36.58 59.97 46.12 42.36
VoxelNet (LiDAR) [14] 0.23 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37

SECOND 0.05 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

guojianhua
下划线

guojianhua
下划线

guojianhua
下划线



Sensors 2018, 18, 3337 13 of 17

Car Pedestrian Cyclist
Figure 5. Results of 3D detection on the KITTI test set. For better visualization, the 3D boxes detected
using LiDAR are projected onto images from the left camera.

Table 3. Bird’s eye view detection performance: Average precision (AP) (in %) for BEV boxes in the
KITTI test set.

Method Time (s)
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

MV3D [8] 0.36 86.02 76.90 68.49 N/A N/A N/A N/A N/A N/A
MV3D (LiDAR) [8] 0.24 85.82 77.00 68.94 N/A N/A N/A N/A N/A N/A

F-PointNet [11] 0.17 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68
AVOD [9] 0.08 86.80 85.44 77.73 42.51 35.24 33.97 63.66 47.74 46.55

AVOD-FPN [9] 0.1 88.53 83.79 77.90 50.66 44.75 40.83 62.39 52.02 47.87
VoxelNet (LiDAR) [14] 0.23 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

SECOND 0.05 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

4.2. Evaluation Using the KITTI Validation Set

As no currently published method except VoxelNet [14] presents validation results for pedestrian
and cyclist detection, we show only our validation results for car detection for comparison with
other methods.

We report the performance achieved on the KITTI validation set in Tables 4 and 5. Both our large
and small networks outperform all the competing approaches across all levels of difficulty, while our
small network maintains a particularly fast inference speed.

Table 4. 3D detection performance: Average precision (AP) (in %) for 3D boxes in the KITTI
validation set.

Method Time (s) Easy Moderate Hard

MV3D [8] 0.36 71.29 62.68 56.56
F-PointNet [11] 0.17 83.76 70.92 63.65
AVOD-FPN [9] 0.1 84.41 74.44 68.65
VoxelNet [14] 0.23 81.97 65.46 62.85

SECOND 0.05 87.43 76.48 69.10
SECOND (small) 0.025 85.50 75.04 68.78

Table 5. Bird’s eye view detection performance: Average precision (AP) (in %) for BEV boxes in the
KITTI validation set.

Method Time (s) Easy Moderate Hard

MV3D [8] 0.36 86.55 78.10 76.67
F-PointNet [11] 0.17 88.16 84.02 76.44
VoxelNet [14] 0.23 89.60 84.81 78.57

SECOND 0.05 89.96 87.07 79.66
SECOND (small) 0.025 89.79 86.20 79.55

guojianhua
高亮



Sensors 2018, 18, 3337 14 of 17

4.3. Analysis of the Detection Results

Figure 6 shows some detection results for point clouds and related images.

Figure 6. Results of detection on the KITTI validation set. In each image, a green box indicates
successful detection, a red box indicates detection with low accuracy, a gray box indicates a false
negative, and a blue box indicates a false positive. The digit and letter beside each box represent the
instance ID and the class, respectively, with “V” denoting a car, “P” denoting a pedestrian and “C”
denoting a cyclist. In the point clouds, green boxes indicate ground truths, and blue boxes indicate
detection results.

4.3.1. Car Detection

The first four images and the related point clouds in Figure 6 are shown as examples of typical
car detection. Our network can produce excellent results for cars at moderate and close distances.
For cars that are farther away, our network still produces good results despite the few available
points, which make it very challenging to detect such objects in an image. Moreover, our network
can surprisingly detect strongly overlapping cars, for which the point clouds contain only a small
proportion of the original car point clouds. Generally, these results demonstrate the effectiveness of
the 3D aspects of our network.

On the other hand, some major failures in car detection, including inaccurate rotation and size
estimation, can be observed for cases with only a few points in the point cloud. Our network missed
many cars that were farther away from the LiDAR, typically containing fewer than 10 points. There is
also a noticeable lack of labels: some far-away or heavily occluded cars are not labeled at all, although
the network did successfully detect these vehicles.

4.3.2. Pedestrian and Cyclist Detection

The last four images and the related point clouds in Figure 6 show detection results for pedestrians
and cyclists. Here, there are more false positives and false negatives than there were for cars. Some false
positives present on unreasonable locations in the image. This difficulty can be attributed to the
typically higher instance densities of pedestrians and cyclists compared with that of cars, with fewer
points per instance, which cause pedestrians and cyclists to be more easily confused with other point
clusters and noise. In addition, the relatively small volumes of pedestrians and cyclists lead to less
voxels of them, which limits the power of the CNNs. However, the promising aspect of this finding is
that if it is possible to use information from such images, unrelated points can simply be filtered and
locations of objects can be easily determined based on 2D detection results, which should make this
problem easy to eliminate.

guojianhua
下划线

guojianhua
高亮

guojianhua
文本框
用二维的图像帮助过滤额外的点



Sensors 2018, 18, 3337 15 of 17

4.4. Ablation Studies

4.4.1. Sparse Convolution Performance

Table 1 shows the performance of our improved sparse convolution method and compares it with
that of the original implementation in SparseConvNet [31]. It can be seen that our sparse convolution
approach is faster than the original implementation because of its faster rule generation.

4.4.2. Different Angle Encodings

Table 6 shows the performances of different angle encoding methods on the KITTI validation
set. It can be seen that our method of handling angles performs better than the angle vector encoding
used in AVOD [9] and ComplexYOLO [19]. In our method, the direction classification weight can
be controlled to make the network focus more on overlap maximization instead of struggling with
direction recognition in difficult cases.

Table 6. A comparison of the performances of different angle encoding methods on the KITTI validation
set for the Car class.

Method Easy Moderate Hard

Vector [9] 85.99 74.79 67.82
SECOND 87.43 76.48 69.10

4.4.3. Sampling Ground Truths for Faster Convergence

To rectify the extreme data imbalance between the positive and negative examples during training,
we introduced a technique for sampling ground truths and their associated point cloud data to construct
better training data on the fly. Figure 7 shows the performance curves for training with and without
ground-truth sampling on the KITTI validation set for the Car class. This figure shows that our
sampling approach greatly increases the convergence speed and enhances the final results.

0 20 40 60 80 100 120
0

20

40

60

80

epoch

A
P
(C

ar
,
m
o
d
er
at
e,

3
D
)

sample
non-sample

Figure 7. Sampling vs. nonsampling methods for 3D map evaluation on the KITTI validation set
(Car class, moderate difficulty).

5. Conclusions

Most existing methods for 3D object detection convert point cloud data into 2D representations,
such as BEV and front-view representations, and thus lose most of the spatial information contained in
the original point clouds. In this paper, we have introduced a novel method of angle loss regression,
have successfully applied sparse convolution in a LiDAR-based network and have proposed a novel

guojianhua
高亮



Sensors 2018, 18, 3337 16 of 17

approach to data augmentation that makes full use of the advantages of point clouds. Experiments on
the KITTI dataset have shown that the proposed network outperforms other state-of-the-art approaches.
Additionally, the proposed architecture has been shown to run in real time. However, our network
shows lower performance for pedestrian and cyclist detection and for BEV detection. Future work will
include the investigation of methods for joint camera- and LiDAR-based detection, such as the fusion
of image features with LiDAR voxel features, to enhance the detection performance and the use of
weakly supervised training to exploit the large unlabeled portion of the KITTI dataset.

Author Contributions: Y.Y. conducted the main part of the work reported in this paper, including proposing the
main idea, performing the training, analyzing the results and writing the paper. B.L. helped to implement the
sparse convolution and reviewed the paper. Y.M. provided overall supervision. All authors were involved in
revising the manuscript.

Funding: This work was supported by a project of the National Natural Science Foundation of China (61571068)
and the Innovative Research Projects of Colleges and Universities in Chongqing (12A19369).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision,
Washington, DC, USA, 7–13 December 2015; pp. 1440–1448.

2. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional
networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain,
5–10 December 2016; pp. 379–387.

3. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
4. Chen, Y.; Wang, Z.; Peng, Y.; Zhang, Z.; Yu, G.; Sun, J. Cascaded pyramid network for multi-person pose

estimation. arXiv 2017, arXiv:1711.07319.
5. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3D object detection for

autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 2147–2156.

6. Chen, X.; Kundu, K.; Zhu, Y.; Ma, H.; Fidler, S.; Urtasun, R. 3D object proposals using stereo imagery for
accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1259–1272. [CrossRef]
[PubMed]

7. Kitti 3D Object Detection Benchmark Leader Board. Available online: http://www.cvlibs.net/datasets/
kitti/eval_object.php?obj_benchmark=3d (accessed on 28 April 2018).

8. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D object detection network for autonomous
driving. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; Volume 1, p. 3.

9. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3D Proposal Generation and Object Detection
from View Aggregation. arXiv 2017, arXiv:1712.02294.

10. Du, X.; Ang Jr, M.H.; Karaman, S.; Rus, D. A general pipeline for 3D detection of vehicles. arXiv 2018,
arXiv:1803.00387.

11. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data.
arXiv 2017, arXiv:1711.08488.

12. Wang, D.Z.; Posner, I. Voting for Voting in Online Point Cloud Object Detection. In Proceedings of the
Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; Volume 1.

13. Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3deep: Fast object detection in 3D point clouds
using efficient convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1355–1361.

14. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. arXiv 2017,
arXiv:1711.06396.

15. Li, B. 3D fully convolutional network for vehicle detection in point cloud. In Proceedings of the IEEE
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1513–1518.

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

guojianhua
高亮

http://dx.doi.org/10.1109/TPAMI.2017.2706685
http://www.ncbi.nlm.nih.gov/pubmed/28541196
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d


Sensors 2018, 18, 3337 17 of 17

16. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, 23–28 June 2004; pp. 580–587.

17. Mousavian, A.; Anguelov, D.; Flynn, J.; Košecká, J. 3D bounding box estimation using deep learning and
geometry. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 5632–5640.

18. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3D lidar using fully convolutional network. arXiv 2016,
arXiv:1608.07916.

19. Simon, M.; Milz, S.; Amende, K.; Gross, H.M. Complex-YOLO: Real-time 3D Object Detection on Point
Clouds. arXiv 2018, arXiv:1803.06199.

20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 779–788.

21. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-Time 3D Object Detection From Point Clouds. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 7652–7660.

22. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3D classification
and segmentation. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; Volume 1, p. 4.

23. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric
space. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 5105–5114.

24. Li, Y.; Bu, R.; Sun, M.; Chen, B. PointCNN. arXiv 2018, arXiv:1801.07791.
25. Graham, B. Spatially-sparse convolutional neural networks. arXiv 2014, arXiv:1409.6070.
26. Graham, B. Sparse 3D convolutional neural networks. arXiv 2015, arXiv:1505.02890.
27. Graham, B.; van der Maaten, L. Submanifold Sparse Convolutional Networks. arXiv 2017, arXiv:1706.01307.
28. Graham, B.; Engelcke, M.; van der Maaten, L. 3D Semantic Segmentation with Submanifold Sparse

Convolutional Networks. In Proceedings of the IEEE Computer Vision and Pattern Recognition CVPR,
Salt Lake City, UT, USA, 18–22 June 2018.

29. Song, S.; Xiao, J. Deep sliding shapes for amodal 3D object detection in rgb-d images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 808–816.

30. Vasudevan, A.; Anderson, A.; Gregg, D. Parallel multi channel convolution using general matrix
multiplication. In Proceedings of the 2017 IEEE 28th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), Seattle, WA, USA, 10–12 July 2017; pp. 19–24.

31. SparseConvNet Project. Available online: https://github.com/facebookresearch/SparseConvNet
(accessed on 28 April 2018).

32. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox
detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; Springer: Amsterdam, The Netherlands, 2016; pp. 21–37.

33. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. arXiv 2017,
arXiv:1708.02002.

34. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark
suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

guojianhua
高亮

https://github.com/facebookresearch/SparseConvNet
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Front-View- and Image-Based Methods
	Bird's-Eye-View-Based Methods
	3D-Based Methods
	Fusion-Based Methods

	SECOND Detector
	Network Architecture
	Point Cloud Grouping
	Voxelwise Feature Extractor
	Sparse Convolutional Middle Extractor
	Region Proposal Network
	Anchors and Targets

	Training and Inference
	Loss
	Data Augmentation
	Optimization
	Network Details


	Experiments
	Evaluation Using the KITTI Test Set
	Evaluation Using the KITTI Validation Set
	Analysis of the Detection Results
	Car Detection
	Pedestrian and Cyclist Detection

	Ablation Studies
	Sparse Convolution Performance
	Different Angle Encodings
	Sampling Ground Truths for Faster Convergence


	Conclusions
	References



